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§1 05-04

§1.1 Logisitics

1. Potentially an oral final exam

2. Too many assignments to grade at the fast pace. Students will self grade their
homeworks, and a few will be chosen at random to see if people are being honest
in their self evaluation

3. All assignments are to be completed in Latex

4. Fact means he’ll say it and not prove it.

§1.2 Schedule

Definition 1.1 (Equivalence Relation). An equivalence relation R on a set S is a set of
pairs R ⊆ S × S such that (write xRy for (x, y) ∈ R)

1. xRx

2. xRy ⇒ yRx

3. xRy ∧ yRz ⇒ xRz

Definition 1.2 (Equivalence Relation). [x] := {y|xRy} is the equivalence class of x

The set of equivalence classes forms a partition of S. Prove this as an exercise.
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Definition 1.3 (Partial Order). Abstraction of comparison. Not all elements can be
compared. A binary relation on a set S. Big difference is no symmetry.

1. x ≤ x

2. x ≤ y ∧ y ≤ x⇒ x = y

3. x ≤ y ∧ y ≤ z ⇒ x ≤ z

Example of taking subsets and ordering them by inclusion. This is a typical partial
ordering that is not total. The real numbers are a total ordering.

Definition 1.4 (Well-founded order). Given a p.o.set (partially ordered set) (S,≤) and
U ⊆ S, we say that u ∈ U is a minimal element of U if ∀v < u, v /∈ U . There can be
infinitely many minimal elements, or none.

Example 1.5

Negative integers has no minimal element

Non negative integers in which 0 is the smallest

Strictly positive rational numbers has no minimal element

A partially ordered set (S,≤) is said to be well-founded if every non-empty subset U has
(powerful word, an existential qualifier) a minimal element.

Example 1.6

Examples - Non-negative integers These are well founded. - The positive rational
numbers These are not well founded - Pairs N × N where (m,n) ≤ (m′, n′) if
m < m′ ∨ (m = m ∧ n ≤ n′). Between (1, 17) and (2, 5) there are infinitely many
elements, but do not be fooled there is still a minimal element.

Fact 1.7. An order is well founded if and only if there are no infinite strictly decreasing
sequences (chain) x1 > x2 > x3 > · · · .
An order that is both totally ordered and well-founded is called a well order.

Theorem 1.8 (Zermelo’s Theorem)

Every set can be given a well order assuming the axiom of choice. People don’t want
to believe this because no one can figure out how to write a well ordering of the real
numbers.

Note 1.9. Zermelo’s well ordering principle, axiom of choice, and zorn’s lemma are
equivalent. Zorn’s lemma is something people don’t want to give up.
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§1.3 Principle of Induction

Definition 1.10 (Predicate). ”predicate”. you’re in the set if you satisfy property of
predicate. ”predicate is a statement that may be true or false depending on the values of
its variables”. ”The set defined by P(x) is written as x — P(x), and is the set of objects
for which P is true.”

(S,≤) is inductive if ∀P, ∀x ∈ S, ∀y < x, P (y)⇒ P (x)

Not every order is inductive. Minimal element takes care of the base case. Which orders
are inductive, and which are not?

Theorem 1.11

An order is inductive if and only if it is well founded.

Proof.

1. Assume V := {s ∈ S | ¬P (s)} is not empty. Which would contradict the
principle of induction. Then ∀y < v0, y /∈ V and P (y). But then this implies
P (v0). So then V = ∅. i.e. ∀x P (x).

2. Ind ⇒ Well founded. Assume U ⊆ S has no minimal element. P (x) := x /∈ U .
∀x(∀y < xP (y)) ⇒ P (x). We know this because if all y is less than x, and
y /∈ U by the predicate, then x /∈ U or else it would be a minimal element of
U .

Induction says that ∀xP (x) ⇒ U = ∅ and hence (S,≤) is well founded
because all sets have a minimal element.

** Emmy Noether Σ = {a, b}.Σ∗ = {ε, a, b, aa, ab, · · · }

Under lexicographic ordering this is not well founded.

§1.4 Strings

A finite set is called an alphabet. Σ∗ is a set of finite sequences. The number of such
sequences is infinite. ε is the symbol for the empty word. A subset of the set of sequences
is called a language.

Definition 1.12 (monoid). A moinoid is a set S with a binary operation · and a unit e.

1. ∀x, y, z ∈ S, x · (y · z) = (xẏ) · z

2. ∀x ∈ S, x · e = e · x = x

3. Monoids are not necessarily commutative. If we have that ∀x, y, x · y = y · x then
we get a special kind of monoid called a commutative monoid.
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4. If there is an inverse operation, it is a group. Monoid’s are a general form of group.

Example 1.13

1. Σ∗ with concatenation and ε is a monoid, but it is not commutative. aab · ba =
aabba.

2. ∀x, y, z if xy = xz ⇒ y = z is a cancellative monoid.

§2 05-05

§2.1 Quantifiers

Can think of ∃ as Eloise and ∀ as Abeland. Think of statements as a game between
these two. The statement is true if Eloise has a winning strategy, and false otherwise (i.e.
Abeland has a winning strategy).

§2.2 Design a machine that accepts string ending in ”aa”.

§2.3 NFA vs DFA

1. There can be multiple next states or no next state. NFA’s can make choices.
There are multiple computation paths corresponding to different choices. A word
is accepted if there exists a path leading to an accept state.

If a machine jams, that is equivalent to rejection. Therefore only sequences that end
with ”aa” can end up at the accept state.

Theorem 2.1

The language accepted by any NFA is a regular language. i.e. could also have been
accepted by a DFA.

Remark 2.2. There is an algorithm for converting an NFA into an equivalent DFA. So
you can go crazy with an NFA and know that it is still a regular language.
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Note 2.3. Another extension: NFA + ε This machine can make jumps wihtout reading
any input.

DFA ≡ NFA ≡ NFA+ ε ≡ Regular Languages

Example 2.4 (Decimal Numbers)

± in front, optional. Two sequences of digits with one or the other (but not both)
potentially empty. The goal is to add numbers.

1. Exactly plus, or exactly minus, or nothing. Otherwise the machine will jam.

2. ε is not just ”hey I can jump to anywhere at any time”; it is part of the design
of the machine.

3. There should be at least one thing after the decimal point.

4. No transition for another dot or plus or minus so any of those would cause the
input to get rejected.

5. Allow for the possibility of ending with decimal point.

6. Need to two path to acceptance to distinguish between either before the decimal
or after the decimal being empty, but not both.

This thing is doing a lot of guessing.
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Note 2.5. In order to accept the language, it most both accept the right things and
reject the wrong things. Cannot just accept everything.

Definition 2.6 (Formal definition of NFA). An NFA is a 4-tuple:

1. Q: a finite set of states

2. Q0 ⊆ Q : a (finite) set of start states

3. F ⊆ Q : a (finite) set of accept states

4. ∆ : Q× Σ→ 2Q.
Or with ε. ∆ : Q× (Σ ∪ {ε})→ 2Q

∆∗ : Q× Σ∗ → 2Q

∆∗(q, ε) = {q}
∆∗(q, w · a) = ∪q′∈∆∗(q,w)∆(q′, a)

5. The accept state

L(N) = {w ∈ Σ∗ | ∃q ∈ Q0,∆
∗(q, w) ∩ F 6= ∅}

Theorem 2.7

Given an NFA N = (Q,Q0, F,∆) there is a DFA M = (S, s0, F
′, δ) such that

L(N) = L(M).

Proof. Keep track of all the places where the m/c (machine) could be.

S = 2q

s0 = Q0

F ′ = {S ⊆ Q | S ∩ F 6= ∅}

Take the union of all the places where it could go.

δ(s, a) = ∪q∈s∆(q, a)

It is easy to see that this works (favorite line of math professors) as advertised.

Remark 2.8. It is possible to have an exponential blow up in the number of states.

Note 2.9. S = 2Q refers to the set of all subsets of Q (power set). The power set of S
can be identified with the set of all functions from S to a given set of two elements 2S .

This can be understood where you represent each of the elements in the set as a digit
in a binary number. Then, in order to find all possible sets, you would find all possible
binary numbers with |S| digits, which gives 2|S|.
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For NFA+ ε we define ε-closure of a set to be the places one can get to with an ε-move.

Example 2.10

Let L be a regular language. Let 1
2L = {w ∈ Σ∗ | ∃x ∈ Σ∗, wx ∈ L ∧ |w| = |x|}.

Look at left half of word and guess that there is something you can tack on to
the right such that the entire word is something the original machine would recognize.

Assume DFA (S, s0, F, δ) recognizes L. We will construct an NFA for 1
2L.

Q = S × S × 2S

First index for . Second index for guessing where DFA will be when w ends. Third
index is to try and track x the second half of the word.

Q0 = {(s0, s, {s})}
F ′ = {(s, s,X) | X ∩ F 6= ∅}

∆((s, s,X), a) = {(s′, s,X ′) | δ(s, a) = s′}

where X ′ is the set of states DFA can reach from x reading any symbol.

Closure properties of regular languages.

1. L1 ∩ L2 is regular. Define a machine for L1 and L2. You create a state space with
the cartesian product of states for L1 and L2. Then you go through in parallel and
if it’s in the accept state of both then it’s accepted.

2. L1 ∪ L2 is regular.

3. Concatenate language. L1 · L2 = {x · y | x ∈ L1, y ∈ L2}.

9
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4. If L is a language, L∗ is a new language where

L∗ = {w1 · · ·wk | wi ∈ L} ∪ {ε}

Basically take as many words as you like and glue them all together. Called the
kleene (clay-knee) star operator. If L is regular⇒ L∗ is regular but not the other
way around.

5. Shuffle.

L1//L2 = {x1y1x2y2 · · ·xkyk | x1x2 · · ·xk ∈ L1, y1y2 · · · yk ∈ L2}

§2.4 Regular Languages as an algebra

Definition 2.11 (Regular expressions). Notation for describing regular languages in a
machine independent fashion.

1. If R1, R2 are regular expressions, then R1 +R2, R1 · · ·R2 are regular expressions.

If R is a regular expression, R∗ is a regular expression.

10
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A regular expression denotes a language.

J∅K = ∅,
JεK = {ε},

JR1 ·R2K = JR1K · JR2K,

JR∗K = (JRK)∗/JRK = (JRK)

Example 2.12

(aa+ b)∗ = {aa, ε, b, aab, bbaab, · · · }

Theorem 2.13 (Kleene Theorem)

A language is regular iff it can be described by a regular expression.

Proof. Easy to see that reg exp implies regular. We already showed relevant closure
properties. Reverse direction later if even.

Note 2.14. ”+” is notation for ”or”.

We have a set of equational axioms for reasoning about equality of regular expressions.
Reg set of regular expressions (without -).

11
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Theorem 2.15

These rules are complete. i.e. every valid equation can be derived from these rules.

Remark 2.16. In order to do anything algorithmic, use DFA.

§2.5 From DFA to reg exp

Enumerate the states of a DFA 1, 2, . . . , k. For every pair of states i, j we define Rnij as a
regular expression describing all strings that take the DFA from i to j only traversing
states 1, . . . , n along the way.

12
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Example 2.17

R0
ij would represent only direct jumps from i to j. Either the empty word, or a

single symbol.

We can compute Rn+1
ij from Rnij . Then you can build the DFA by union all regular

expressions describing jumps from start to accept states.

§3 05-06

§3.1 Minimization of DFA

Example of machine that checks divisibility by 3. But we already saw a three state
machine that does the same thing.

13
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δ(s0, 0) = s0 = δ(s3, 0)δ(s1, 1) = s1 = δ(s3, 1)

These states are doing the same thing so there’s no reason to keep them separate.

Note 3.1. Once you get to a state, it doesn’t matter how you got there. What happens
in the future only depends on what you read in the future.

This is the fundamental meaning of the word state. It encodes the information to
predict the future.

Definition 3.2. Given a DFA M = (S, s0, δ, F ), Σ, p, q are equivalent, p ≈ q if

∀x ∈ Σ∗, δ∗(p, x) ∈ F ⇔ δ∗(q, x) ∈ F

So the languages defined by their starting states are the same.

Remark 3.3. p 6≈ q means ∃x ∈ Σ∗ such that

(δ∗(p, x) ∈ F ∧ δ∗(q, x) /∈ F )

∨
(δ∗(p, x) /∈ F ∧ δ∗(q, x) ∈ F )

Observe that ≈ is an equivalence relation.

Lemma 3.4

p ≈ q ⇒ ∀a ∈ Σ δ(p, a) ≈ δ(q, a). But not necessarily δ(p, a) = δ(q, a).

[p] := {q | p ≈ q}, p ≈ q ⇔ [p] = [q]

This means that [p] = [q]⇒ [δ(p, a)] = [δ(q, a)].

14
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We define a new machine M ′ = (S′, s′0, δ
′, F ′).

S′ = S/ ≈, s′0 = [s0], F ′{[s] }

This is a simpler draft

Lemma 3.5

p ∈ F ∧ p ≈ q ⇒ q ∈ F

This is trivial when considering ε ∈ Σ∗

Lemma 3.6

∀w ∈ Σ∗, δ′∗([p], w) = [δ∗(p, w)]

Proof. By induction on the length w.

Theorem 3.7

L(M) = L(M ′)

Proof.

x ∈ L(M ′)⇔ δ′∗([s0], x) ∈ F ′

⇔ [δ∗(s0, x)] ∈ F ′ ⇔ δ∗(s0, x) ∈ F
⇔ x ∈ L(M)

Quotient construction. Might be that every equivalence class contains element, but
maybe each one contains several states. But definitely didn’t get a bigger machine.
This process is called collapsing a machine.

§3.2 Splitting Algorithm

Fact 3.8. If ∃a ∈ Σ such that δ(p, a)bowtieδ(q, a), then pbowtieq. The contrapositive of
the above.

15
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Matrices of booleans. You can multiply matrices of booleans by using ”and” and ”or”.
The collection of n× n matrices over a ring is always a ring.

Algorithm

1. For every (p, q) such that p ∈ F ∧ q /∈ F , put 0 in the (p, q) cell of the matrix.

2. Repeat until no more changes. For each pair (p, q) that is not already marked with
a 0, check if ∃a ∈ Σ such that (δ(p, a), δ(q, a)) is marked with 0. If so mark (p, q) 0.

This algorithm correctly computes the equivalence classes. The time complexity is O(n4)
in the naive case. O(n2k) using data structures. O(n log n) Hopcraft method.

Theorem 3.9

If at the end two states are not marked 0 then they are equivalent.

Theorem 3.10

There is a unique minimal automaton to recognize a regular language.

This is how you prove the equivalence of regular expressions.

Definition 3.11 (Right invariant). An equivalence relation R on Σ∗ is said to be
right-invariant if

∀x, y ∈ Σ∗ such that xRy ⇒ ∀z ∈ Σ∗, azRyz

Example 3.12

DFA M = (Q,Σ, q0, δ, F ),

xRmy ⇔ δ∗(q0, x) = δ∗(q0, y)

Example 3.13

Given L ⊆ Σ∗, not necessarily regular, we define RL on Σ∗

xRLy ⇔ xz ∈ L⇔ yz ∈ L

Note 3.14. The index of an equivalence relation is the number of equivalence classes.
Infinite equivalency classes means infinite index.
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Theorem 3.15 (Myhill-nerode 1957)

The following are equivalent

1. L is regular

2. L is the union of some of the equivalence classes of a right-invariant equivalence
relation R of finite index.

3. Any equivalence relation R with the properties described in (2) has to refine
RL.

Note 3.16. To say that an equivalence relation refines another means that it parti-
tions all the equivalence relations.

Full proof is in the notes.

§3.3 Brozozowski’s Algorithm

Will convert some DFA to NFA.

1. Reverse all the arrows change the initial states to an accept state, and make all the
accept states start states.

2. Determinize it. This may cause exponential blow up because you are looking at
the set of all subsets. Convert it from NFA to DFA.

3. Remove unreachable states.

4. Repeat 1.

5. Repeat 2. Might expect double exponential blow up, but instead there is a huge
collapse to the minimal version of the original machine.

6. Repeat 3.

The result is the minimal machine.

Can’t explain the whole thing. The point is to get interested and excited about this
topic.

Note 3.17. XA means the set of all functions from A to X. δ(x) : X → XA.

XA ≈ [A→ X]

We can either write δ(x)(a) in which case δ : X → XA or δ(x, a) where δ : X ×A→ X.
This process is called currying.

17
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§3.4 Infinite state automata

A∗ is set of all words. Every word is a state. Initiale state is empty word.

States are words. Transition is stick the new letter at the end of the word.

There exists a unique map r : A∗ → X such that the diagram above commutes.

Whatever path you follow that leads to the same end state results in the same out-
come. Same as moving a different path with different endpoints.

Note 3.18. Give f : V →W , fA : V A →WA. ϕ ∈ V A, then fA(ϕ)(a) = f(ϕ(v)). This
is countably infinite.

Definition 3.19 (Reachability). r maps the empty string to the . r tracks every word
through the automaton with δ∗. r is the reachability map. It tells you which states can
be reached. An automaton is reachable if every state can be reached.

§4 05-07

18
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Lemma 4.1 (Pumping Lemma)

L = {anbn | n ≥ 0}

Not possible to recognize this language with finite automaton because it would
require unbounded memory. Non regular languages could recognize this.

Suppose we have putative (generally considered or reputed to be) DFA that recog-
nizes L. Then we can pick a word with a block of a with length greater that the
number of states in the machine. This means that the machine will have to repeat a
state. This rests on the pigeon hole principle.

The idea is that now you can exploit this loop as many times as you’d like by
inserting the string that brings you about the loop.

Now for the lemma. Let L be a regular language. Then

∃p > 0 such that ∀w ∈ Σ∗ | w ∈ L ∧ |w| ≥ p
∃x, y, z ∈ Σ∗ such that w = xyz, |xy| ≤ p, |y| > 0

∀i ∈ N, xyiz ∈ L

An intuition for this is that y is the word that takes you through the loop, so you
can repeat it as many times as you’d like.

Given a DFA for L choose p to be strictly greater than the number of states in the
DFA. If |w| ≥ p ∧ w ∈ L then as the automaton changes state it must hit the same
state twice while reading the first p letters, when p is greater than the number of
states in the machine.

Definition 4.2 (Finite Language). A finite language is one containing a finite number
of words.

Fact 4.3. Every finite language is regular. The p that you choose is longer than any
word in the language. So then a finite language would have no words of length greater
than p.

Fact 4.4. L regular ⇒ L can be pumped. Contrapositive is that L cannot be pumped
⇒ L not regular.

Note that it is not true that L can be pumped ⇒ L regular.
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Lemma 4.5 (Pumping Lemma Contrapositive)

L ⊆ Σ∗ s.t. ∀p > 0

∃w ∈ L with |w| ≥ p s.t.
∀x, y, z ∈ Σ∗ with w = xyz, |xy| ≤ p ∧ |y| > 0

∃i ∈ N s.t. xyiz /∈ L
⇒ L is not regular

Use games to deconstruct this statement. You and the devil. You play the ∃
quantifiers, and the devil plays the ∀ quantifiers. You must come up with a strategy
to win every game.

The obvious first move is represented by a symbolic p. Your first move is explicit.
The devil’s move in step 3 must be analyzed by an exhaustive case analysis. Your
last move must specify a response for all cases.

Example 4.6

L = {anbn | n ≥ 0}

1. Demon choses p > 0

2. You chose w = apbp

3. The devil is constrained by |xy| ≤ p to choose y to consist exlucisvely of a’s.
So y = ak for some 0 < k ≤ p.

4. I choose i = 2. Didn’t quite catch the rest

Thus L is not regular.

Example 4.7

L = {aq |q a prime number}

Demon picks p > 0. I pick an where n > p, n is a prime. Demon has to pick
y = ak where 0 < k ≤ p. I pick i > 1, deferring the exact choice. New string xyiz is
an+(i−1)k. Choose i = n+ 1. Then an+nk = an(1+k) which is not a prime number so
L is not regular.
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Example 4.8

L = {anbm | n 6= m}

Wants you have a stock of languages that you know are not regular, you don’t
always have to do pumping. This example is hard to do directly with the pumping
lemma.

L (L complement) is a big mess. But L ∩ a∗b∗ = {anbn | n ≥ 0}. This is not
a regular language to L is not regular.

Example 4.9

L = {aibi |i > j}.

Example 4.10

L = {x+ y = z |xyz ∈ {0, 1}∗ ∧ the equation is valid}

Demon picks p. I pick

111 · · · 1︸ ︷︷ ︸
p

Definition 4.11. If S ⊆ N, define unary(S) = {1n |n ∈ S}. binary(S) = {w ∈
{0, 1}∗ | wread as a binary number is inS}}

If binary(S) is regular does that mean unary(S) is regular? No. Consider S = {2n | n ≥
1}. Then binary is regular because 100∗ is clearly regular. unary(S) = {12p} is not
regular because you can pump to a non power of 2.

§4.1 Kleene Algebras

Definition 4.12 (Semi-ring). A set with 2 operations. S: the carrier of the semi-ring.
+ : S × S → S. × : S × S → S. 0 : S, 1 : S. (S,+, 0) forms a commutative monoid.
(S, x, 1) forms a monoid. × distributes over +. 0 annihilates with x i.e. a×0 = 0×a = 0.

Semi-ring is similar to a ring, but doesn’t require that each element has an additive
inverse. i.e. if (S,+, 0) forms a group then it produces a ring instead of a semi-ring.

Example 4.13

(N, 0, 1,+,×). This forms a semi ring, because we don’t have the negative integers
for the additive inverses. (Z, 0, 1,+,×) would form a ring.

Z + iZ = {a+ ib | a, b ∈ Z, i2 = −1} is the ring of Gaussian integers.
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Example 4.14

n× n matrices over N. Multiply by matrix multiplication and add componentwise.

Example 4.15

An idempotent semiring J is a semi ring such that ∀x ∈ J, x2 = x. (T, F,∨,∧).

idempotent is an element which is unchanged in value when multiplied or oth-
erwise operated on by itself.

Example 4.16

If we have any semiring, the set of n× n matrices with entries in this semiring form
a semi-ring.

Definition 4.17 (Kleene Algebras). K = (S,+, ·, 0, 1, ∗).

1. (S,+, 0): commutative monoid

2. (S, ·, 1): monoid

3. (S,+, ·, 0, 1) forms an idempotent semiring.

4.

1 + aa∗ = a∗

a+ a∗a = a∗

5. We introduce a partial order a ≤ b := a+ b = b (check that this is really a partial
order). 2 rules.

b+ ac ≤ c⇒ a ∗ b ≤ c
b+ ca ≤ c⇒ ba∗ ≤ c

Example 4.18

Let Σ be a finite alphabet S = regular languages ⊆ Σ∗. + is union. · concatenation.
∗ is kleene star.
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Example 4.19

S any set and R the collection of binary relations on S. A binary relation r ⊆ S×S. +
is union. · is relational composition. xry means (x, y) ∈ r. x(r ·s)y = ∃zs.t.xrz∧zsy.
0 := ∅. 1 := {(s, s) | s ∈ S}. r∗ is the reflexive, transitive closure of r.

graphs are a nice way of picturing relations. r∗ is reflexive, transitive closure
of r. transitive closure let’s you take the paths of the graph. And everything
is related to itself. Directed graph because not necessarily symmetric. xr∗y if
∃n ∈ N, z1, · · · , zns.t.xrz1 ∧ z1rz2 · · · znry . i.e. there exists a path from x to y.

Solving for x. ax+ b = x. a∗b is the smallest solution. aa ∗ b+ b = (aa ∗+1)b = a∗b.
Smallest solution means that if x is another solution, then a∗b ≤ x.

Example 4.20

If K is any kleene algebra, Mn(K) is n×n matrices with entries in K. Do operations
as you would expect about matrices. What the heck is star though? 0 is 0. 1 is 1
along diagonal and 0 everywhere else.[

a b
c d

]∗
:=

[
(a+ bd∗c)∗ (a+ bd∗c)∗bd∗

(d+ ca∗b)∗ca∗ (d+ ca∗b)∗

]
Now we can solve matrix vector equations.

Dexter Kozen has developed and extended the theory tremendously including probabilistic
extensions.

§5 05-11

Σ corresponds to the alphabet. Σ∗ represents finite words. Σω is the set of infinite words
over Σ.

If Σ = {a, b}, Σω is uncountable. Σ∞ = Σ∗ ∪ Σω. A string in Σω is countable, so
positions in the string can be indexed by N i.e. countable.

There is a natural partial order on Σ∞. α ≤ β if α is a prefix of β. Infinite strings cannot
be compared.

First ordinal. Reflexivity is part of a partial order.

Remark 5.1. We can define a metric on Σ∗ by letting d(x, y) = 2−n where n is the first
position where x[n]! = y[n]. The longer the shared prefix the closer two words are. This
is an ultrametric which means that it satisfies the following strengthened version of the
triangle inequality

d(x, z) ≤ max(d(x, y), d(y, z))

Σ∞ is the cauchy completion of Σ∗ and the metric naturally extends to Σ∗.
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Infinite strings are important for the verification of reactive systems. They are designed
to run forever so they have to talk about infinite computations.

§5.1 ω regular expressions.

Let E be a regular expression and ε /∈ L(E).

Eω is an ω-regular expression.

Lω(Eω) := {w1w2w3 · · · | wi ∈ L(E)}

where Lω(F ) is the ω-language defined by the ω regular expression F .

Let Ei be regular xpressions and Fi be regular expressions such that ε /∈ L(Fi).

E1(F1)ω + · · ·+ En(Fn)ω

is a general ω-regular expression.

Eω = EEω so Eω is also an ω-regular expression.

When concatenating where α, β ∈ Σω, αβ = α.

Definition 5.2. An ω-language (⊆ Σω) is ω-regluar if defined by some ω regular expres-
sion. This ω-regular expression may not be unique.

Note 5.3. · is concatenation. + is union. (.)ω is infinite repetition.

§5.2 ω-automata

Specifically non deterministic biichi automata.

A = (Q,Σ, δ, Q0, F )

δ : Q× Σ→ 2Q

s′ ∈ δ(s, a) ≡ s→a s
′

Given a word σ ∈ Σω, a run of ω in A is an infinite sequence of states q0, q1, · · · such
that q0 ∈ Q0, ∀i qi →σ[i] qi+1.

inf(r) = {q | q occurs infinitely often inr}

A run is accepting if it hits an accept state infinitely often. There are only finitely many
accept states so one of them has to be hit infinitely many times.

inf(r) ∩ F 6= ∅

A word is accepted by A if that word has some accepting run.
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Example 5.4

Lω(A) = c∗ab(b+ + bc∗ab)ω

We see that it doesn’t necessarily have to be periodic, but perhaps a periodic aspect
to it. Get it to the start state first, then think of a pattern.
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Theorem 5.5

NBA’s accept exactly the ω-regular languages.

Proof. Show that any ω-regular language can be captured by an NBA.

Given Ai = (Qi,Σ, δi, Q0,i, Fi), i = 1, 2 with Q1 ∩ Q2 = ∅. Then A1 + A2 =
(Q1 ∪Q2,Σ, δ, Q0,1 ∪Q0,2, F1 ∪ F2). You can start either in start states of A1 or A2.

δ(q, a) = δi(q, a) if q ∈ Qi
Lω(A1 +A2) = Lω(A1) ∪ Lω(A2)

We are now considering Fω. We have an NFA for F and assume that all the inital
states are non accepting. Q0 ∩ F = ∅ and there are no incoming transition to any
state in Q0. You may worry that this will be too restricting on applicable NFAs.
But if your NFA does not satisfy these assumptions we can modify it so that it does
and defines the same language.

Idea for doing this: Brand new unique start state. And then leave everything
afterwards untouched.

Given A = (Q,Σ, δ, Q0, F ). NBA A′ = (Q,Σ, δ′, Q1, F
′). Lω(A′) = (L(A))ω. The

goal is to keep recognizing infinitely many words. So each time you hit an accept
state, send it back to the start state.

Case three. NFA . NBA.

This proves that any language defined by an ω-regexp can be recognized by an
NBA. Cases are union of two omega regexp. extension of regexp to omega regexp.
And concatenation of regexp with omega regexp.
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Theorem 5.6

Other direction

Suppose A = (Q,Σ, δ, Q0, F ) NBA. Fix any 2 states. Aqp := (Q,Σ, δ, {q}, {p}).
This converts it to an NFA. It is not meant to read omega words.

L(Aqp) = Lqp = {w ∈ Σ∗ |δ∗(q, w) 3 p}

These are words that take you from q to p.

Now consider an accepted word σ of Lω(A) with an accepting run. It must hit sum
q ∈ F that appears infinitely often. Therefore

σ = w0︸︷︷︸
Lq0q

w1︸︷︷︸
Lqq

w1︸︷︷︸
Lqq

· · ·

where wi are non empty. Any σ the can be expressed like this has an accepting run.
Therefore

Lω(A) = ∪q0∈Q0 ∪q∈F Lq0q · (Lqq \ {ε})ω

Therefore anything recognized by an NBA is described by an ω-regular expression.
Kleene’s theorem for ω-languages.

Lemma 5.7

Lω(A) 6= ∅ iff ∃ a reachable accept state that belongs to a cycle.

A1 ≡F A2 they are the same as NFA. L(A1) = L(A2). A1 ≡B A2 they are the same as
NBA. Lω(A1) = Lω(A2).
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Example 5.8

Does ≡F⇒≡B? No! Does ≡B⇒≡F ? No!

Idea here is that it distinguishes even length from odd length, but infinity length is
both even and odd.

Theorem 5.9

NBAs and DBAs are not equivalent. There is no DBA that can recognize (a+ b)∗bω.
This is what makes omega automata much trickier.

Proof. Suppose we have a DBA for this language. We can define δ∗ as usual on the
underlying DFA. Consider the word bω ∈ (a+ b)∗bω

Since bω is accepted, we must hit an accept state at some point. Therefore δ∗(q0, b
n1)

is an accept state. bn1abω ∈ L. This has to hit an accept state again after reading a.
You can continue this process. Have to hit the same accept state twice. But then
∃i, j, i < j where

δ∗(q0, b
n1abn2 · · · abni) = δ∗(q0, b

n1abn2 · · · abnj )

But then there is a loop. So you can include infinitely many b in the language.
Contradiction. So NBA are strictly more expressive than DBA.

Let α ∈ Σ∗ω and define α|n ∈ Σ∗ to be the length of n finite prefix.
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Definition 5.10. ForW ⊆ Σ∗ we define ~W = {α ∈ Σω |∃ infinitely many n ∈ Ns.t. α|n ∈
W} Words where you can always make the prefix in W longer. ~W is called a limit
language.

Theorem 5.11

An ω-regular language L is recognizable by a deterministic BA iff there is a regular

language W such that L = ~W .

Proof. DIY

Theorem 5.12

DBA are closed under complement.

If A is a DBA, ∃ an NBA A′ such that Lω(A′) = Σ∗ω \ L(A).

A′ = (Q′,Σ, δ′, Q′0, F
′).A = (Q,Σ, δ, Q0, F ).

Q′ = (Q× {0}) ∪ ((Q \ F ) ∪ {1})
Q′0 = Q0 × {0}

§6 05-12

§6.1 Basic Propositional Logic

Lot’s of confusion about what is meant by a true statement vs valid statement vs theorem.

§6.1.1 Syntax

PROP = {p, q, r, · · · } are propositional variables.

ϕ,ψ are meta-variables for describing generic propositional formulas.

Formulas are defined inductively. Inductive because you have some formulas and you
give rules for building new formulas from old ones.

This is syntax. What I’m allowed to write, but explaining anything about what they
mean. Explaining what they mean is called semantics.

1. T for true is a formula, and ⊥ for false is a forumla.

2. Any propositional variable is a formula

3. If ϕ is a formula, so is ¬φ.
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4. If ϕ and ψ are formulas, so are ϕ ∧ ψ, ϕ ∨ ψ, ϕ⇒ ψ

§6.1.2 Proof Theory

How to use and manipulate formulas in deduction. Proof theory is not about being true.
It’s about true.

Gamma is the set of assumptions you are making.

γ ∪ {ψ} but we write γ, ψ

You can do introduction or elimination.
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¬ϕ is a marco for ϕ⇒ bot.

A proof is a tree whose leaves are axioms, the nodes are rules instances, and the rute is a
single judgement γ ` ϕ.

If the root has the form ` we say that ϕ is a theorem.

§6.1.3 Semantics

Interpret logical formulas as elements of a simple mathematical structure.

A valuation v : PROP → {0, 1}. Extend v to a map on formulas by structural in-
duction.

v(T ) = tt v(⊥) = ff

v(ϕ) ∧︸︷︷︸
Boolean algebra

v(ϕ′) = v(ϕ ∧︸︷︷︸
Syntax

ϕ′)

If |= ϕ, then ∀v, v(ϕ) = tt. Such a formula is called a tautology.

` denotes a syntactic implication while |= denotes a semantic implication.

Theorem 6.1 (Soundness)

If γ ` ϕ then γ |= in particular if ` ϕ then |= ϕ.

Theorem 6.2 (Completeness)

If γ |= ϕ then γ ` ϕ.

Suppose that γ has no valuation such that ∀ϕ ∈ γ, v(ϕ) = tt. Then we say that γ is
unsatisfiable.

Theorem 6.3 (Compactness)

If γ is unsatisfiable, then some finite subset of γ is unsatisfiable.

Remark 6.4. Tepmoral logic fails this property.

§6.2 Temporal Logic

as opposed to propositional logic. The basic atomic properties can change their truth
values in time.

A mir Puuli showed this is very useful for reasoning about code execution especially
concurrent programs.
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§6.2.1 Syntax

PROP = {p, q, r, . . . }. Formulas ¬,∧, . . . . Two temporal operators O, u. If ϕ is a formula
then 0ϕ is a formula. If ϕ,ψ are formulas, then ϕuψ is a formula.

ϕ = true|p|ϕ1 ∧ ϕ2|¬ϕ|Oϕ|ϕuψ

Intuition. Instead of a valuation we have a linear sequence of valuations. We will call
these valuations states. The entire sequence is called a history.

Defined operators.

§6.3 Labelled Transition System

(S,Act,→, I, AP,L) S states perhaps infinite. Act actions. →⊆ S × A× S. represents
function a s→ s′ I ⊆ S. initial states. AP are the set of atomic propositions.

§7 05-13

§7.1 Bisimulation

Transition systems as models of software or hardware or embedded systems.

Nondeterminism, need not be finite state.

When are two systems observably the same?
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Example 7.1 (Vending Machine)

Difference from DFA, some actions get rejected. The rejection is different from the
rejection in an NFA because really that encodes a state where you can’t escape,
while this is more true rejection. No start states or accept states. Just interested in
what actions we see.

Internal vs. external choice is what makes these two machines different. This shows
how sequences are inadequate description of the behavior. So how can we actually
compare to LTS? With bisimulation.

Definition 7.2 (LTS (Labeled Transition System)).

S → set of states, perhaps infinite

A→ set of actions, finite

→⊆ S ×A× S

(s, a, s′) ∈→, s
a→ s′

From state s, if action a is performed, you can end up in s′.

Definition 7.3 (Bisimulation (semi-formed)). When comparing two systems, we form a
binary relation between the states of a simple. This isn’t a big deal because we could
merge the two systems.
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We say s, t ∈ S are bisimilar (written s ∼ t) if

∀a ∈ A s
a→ s′ ⇒ ∃t′s.t.t a→ t′ and s′ ∼ t′

∀a ∈ At a→ t′ ⇒ ∃s′s.t.s a→ s′ and s′ ∼ t′

If s can do something, t can do the same thing. And they may end up in different states,
but those states themselves will be bisimilar. This should make you uneasy because it’s
an inductive definition with no base case.

There are 4 ways of clarifying this definition.

1. We define an N indexed family of equivalence relations (infinitely many of them) as
follows: s ∼0 t always. Then

s ∼n+1 if ∀a ∈ A s
a→ s′ ⇒ ∃t′s.t.t a→ t′ and s′ ∼n t′

vice versa

Now we say that ∼= ∩n ∼n

In the vending machine example s0 ∼1 t0 but s0 6∼2 t0 and hence they are certainly
not bisimilar systems.

2. R the family of equivalence relations ⊆ S × S order by inclusion. Smallest is
everything is related to itself. Largest is everything related to everything. This
forms a complete lattice. F : R→ R.

sF (R)t if ∀as a→ s′ ⇒ ∃t′s.t.t a→ t′ and s′Rt′

vice versa

F is easily seen to be monotone i.e. if R1 ⊆ R2 then F (R1) ⊆ F (R2). It follows
that there is a unique greatest fixed point. i.e. a special ∼∈ R such that F (∼) =∼
and if R is any relatoin such that F (R) = R then R ⊆∼. This is called fixed point
bisimilarity.

3. We saw R is a dynamic relation or a bisimulation relation if whenever sRt then .

∀a∀s′ s a→ s′ ⇒ ∃t′s.t.t a→ t′ and s′Rt′

vice versa

Note that this is not circular. R is given somehow and it may or may not have this
property. We say that s ∼ t if ∃R, a bisimulation relation with sRt.

Fact 7.4. If Ri is any family of bisimulation relations, then ∪iRi is also a bisimu-
lation as is ∩iRi. ∼= ∪RaR.

Easy to see that (2) and (3) are equivalent. (1) is not equivalent without a further
assumption.

§7.2 Lattice Theory and Fixed Points

Remember that a poset is a partially ordered set. i.e. a set equipped with a partial order.
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Given (S,≤), we say that u is the least upper bound of X ⊆ S if

∀x ∈ X, x ≤ u and ∀y ∈ S, if ∀x ∈ X,x ≤ y ⇒ u ≤ y

If X ⊆ S we say v is a lower bound of x if ∀x ∈ X, v ≤ x. If v in addition is greater
than any other lower bound, we call it the Infimum.

Definition 7.5. In a lattice there is a supremum and infimum for every pair of elements.
They are not necessarily unique. By induction it follows that every finite set of elements
has a supremum and infimum. Infinite numbers may not.

Definition 7.6 (Complete Lattice). A lattice is complete if every subset has a least
upper bound.

Fact 7.7. It follows that every set has a greatest lower bound.

The least upper bound of ∅ is a least element of the whole set.

Proof. Let X ⊆ L, where L is a complete lattice. Let V = {v ∈ L | ∀x ∈ X v ≤ x} be
the set of lower bounds of X.

Let g = sup(V ). Claim g is inf(X).

Note 7.8. ∀x ∈ X, ∀v ∈ V, v ≤ x. i.e. ∀x ∈ X, x is an upper bound for V so since g is
the lesat upper bound for V we have that ∀x ∈ X, g ≤ x, i.e. g ∈ V .

Since g is an upper bound for V it is greatre than any element of V so it is the
glb of X.

Theorem 7.9

If f : L → L is monotone and L is a complete lattice, then the fixed points of f ,
i.e. x s.t. f(x) = x forms a complete lattice in its own right. In particular there
is a least fixed point and a greatest fixed point. There is a least fixed point and a
greatest fixed point.

Proof. Find the upper bound of set of inflationary points and show that it is fixed.

Note to be a bisimulation relation meansR ⊆ F (R). Least upper bound of {R |R is a bisimulation} =
∪RR = gfp(F ) (greatest fixed point). (2) and (3) are really the same. (1) is not the
same unless the transition system has a special property ∀s, a{t |s→a t} is finite. This
is called image-finiteness.

If TS is image finite then (1) is equivalent to (2) and (3). The definition of bisim-
ulation is an example of a co-inductive definition.
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§7.3 Logical Characterization of Bisimulation

Given an LTS, we define a modal logic called Hennessy-Milner Logic.

ϕ ::== T | ¬ϕ | ϕ1 ∧ ϕ2 | 〈a〉ϕ

s |= 〈a〉ϕ〉 if ∃t s.t. s→a t and t |= ϕ. At least one state satisfies.

[a]ϕ = ¬〈a〉¬ϕ

Every state t such that s→a t must satisfy ϕ.
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Theorem 7.10

s ∼ t if and only if ∀ϕs |= ϕ⇔ t |= ϕ (image finiteness assumed). Don’t be afraid of
infinite conjunctions.

Proof. We define a new equivalence relation ≈. s ≈ t⇔ ∀ϕ s |= ϕ⇔ t |= ϕ.

Idea is to prove that ≈ is a bisim relation. Suppose s ≈ t and suppose s→a s
′. We

want to show that ∃t′ s.t.t→a t
′ and s′ ≈ t′.

Assume that s and t are not bisimilar. Then ∀t′ s.t. t →a t′, s′ 6≈ t′. There
are only finitely many such t′ : t′1, . . . , t

′
n.

§7.4 Probabilistic Bisimulation and Logical Characterizaiton

Probabilistic transition systems. s |= 〈a〉qϕ. a ∈ Act, q ∈ Q ∩ [0, 1] The probability of
winding up in a state sastisfying ϕ after doing an a action in state s ≥ q. Larsen and
Skou proved logical characterization using

〈a〉qϕ and ¬ϕ and ϕ1 ∧ ϕ2

They also assumed a very strong finite branching property. And probabilities must be
integer multiples of some fixed rational number.

AMAZINGLY proved logical characterization with no finite branching assumption and
no negation in the logic. We alo got logical characterization of simulation.

§8 05-14

§8.1 Learning Automata

Dana Angluin (1987)

Model. She assumed the existence of a teacher: minimally adequat teacher.

It’s always regular languages. Trying to learn a DFA. You can ask “is w in L?”.

After collecting some information you propose an answer. A teacher says “Yes” or “No”
and here is a counter example: a word in L that your proposed machine rejects or a word
not in L which your machine incorrectlys accepts. Teacher’s choice not yours.

Theorem 8.1

With polynomially man queries you are guaranteed to learn the correct unique
minimal DFA for L (even if teacher has a different more complex version).

Basic data structure: Observation table. S,E ⊆ Σ∗, both finite. Helpful to think of S as
states and E as experiments.
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Assume you have a table with certain properties satisfied. We can propose a DFA

An observation table is said to be closed when

∀t ∈ S · Σ, ∃s ∈ S s.t. row(t) = row(s)

An observation table is consistent when

∀s1, s2 ∈ S, row(s1) = row(s2)⇒ ∀a ∈ Σ row(s, a) = row(s2, a)

An observation table desribes a DFA iff it is closed and consistent.

Algorithm:

1. When it’s not closed, you ask for more queries.

2. When it’s not consistent, you expand the number of experiments.

3. When it’s closed and consistent, you present your DFA. If it’s wrong, you use the
counter example to expand the table and start over.

Example 8.2

This is an extended example going through the process of finding the DFA. I won’t
write it down. These notes do a great job

A similar algorithm works for weighted automata.

This is kinda automata theory meets machine learning. Another application is in
trying to understand what an RNN does. The question of interpreting what an RNN
does once it has been trained. It’s important to have explainable AI.

Idea: Use an RNN as the teacher and extract a DFA as the explanation of what
the RNN is doing. Gail Weiss. Alika Utepoua and Prakash are exploring this.

§8.2 Fixed Point Operators and LTL

�ϕ = Oϕ ∧OOϕ · · ·

This leads to infinitely many conjunctions. We should be able to prove this with induction.
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X is a new syntacting entity. It is a variable that can range over formulas. µX and νX
are variable binders. They are called fixed point operators.

Recall 8.3. Every monotone function from a complete lattice to itself has a least fixed
point and a greatest fixed point. µ stands for least fixed point. ν stands for greatest
fixed point.

We are not allowed to put a fixed point operator binding an X unless X appears in the
scope of an even number of negations.

µX.ϕ ∧ ¬X and µX.X ⇒ ϕ are not allowed because they involve negated X. Re-
member that x⇒ y is the same as ¬x ∨ y.

We defined the semantics in terms of sequences σ |= ϕ.

JϕK = {σ | σ |= ϕ}

gives a definable set. Given a formula with a free variable, we interpret it not as a set
but as a function from sets to sets.

Jϕ(X)K = S 7→ Jϕ[S/X]K

ϕ[S/X] notation for substitute the set S regarded as a formula for X in ϕ.

e.g. ϕ(X) = ψ ∧OX.

Jϕ(X)K(S) = {σ | σ |= ψ ∧ σ[1..] ∈ S}

Fact 8.4. With the restriction these functions are always monotone and P (Σω) is a
complete lattice.

Now we define

JµX.ϕ(X)K = lfpJϕ(X)K
JνX.ϕ(X)K = gfpJϕ(X)K

It’s a nightmare to interpret nested fixed points in human terms (although it is still well
defined).

�ϕ = νX.ϕ ∧OX
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§9 05-19

Previously we were working with finite memory machines. Limitations on what we could
do even when we came to omega languages.

Two ways to recognize regular languages. Regular languages in terms of deterministic
finite automata, and regular expressions.

Now we are getting infinite memory. A finite state machine plus an auxiliary stack. Then
in the next module we will get two stacks.

§9.1 Context Free Languages

We will define CFL’s in terms of grammars.

We will define a grammar as a way to generate strings in the language. There is a lot
more structure than regex had. Rules for producing strings.

Definition 9.1 (Context-free Grammar). A context-free grammar consists of
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1. a set of symbols called terminals (Σ alphabet)

2. Another set of symbols called non-terminals or variables V .

3. Both V,Σ are finite, and V ∩ Σ = ∅.

4. A special variable called the start symbol, usually but not always S.

5. A set of rules called PRODUCTIONS.

A→ α, A ∈ V, α ∈ (V ∪ Σ)∗

Example 9.2

Let Σ = {a, b}. These are our terminal symbols. Terminal suggests that something
has to be terminated. Variable on the other hand suggests something that can
change. V = {S}. Just the start symbol. Rules:

S → ε, S → aSb

Apply any rule you like to replace a non-terminal with the RHS of a rule. It doesn’t
matter what the surrounding context is. This is why it’s called context free.

S → aSb→ aaSbb→ aaaSbbb→ aaabbb

This allows you to create {anbn | n ≥ 0}, which is not a regular language. CFL’s
are clearly more powerful than regular languages.

When you obtain a string with no more non-terminals, you have generated a string
in the context free language.

L(G) = {w ∈ Σ∗ | w can be generated from the start symbol S}

Unlike with DFA the language is defined and then you have to recognize it, here
you are generating the language.
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Example 9.3 (Grammar for arithmetic expressions)

All modern programming languages, the syntax is a context free language, oftentimes
it is even more restricted than that. Cobalt does not have a context free grammar,
but now we’ve realized that this is a stupid idea. Every modern programming
language is context free.

Σ = {0, 1, · · · , 9,×,+, (, )}
V = {〈EXP 〉, 〈NUM〉, 〈NZ〉, 〈N〉}

Start symbol < EXP >. Notation to save space.

〈EXP 〉 → 〈EXP 〉+ 〈EXP 〉 | 〈EXP 〉 × 〈EXP 〉 | 〈EXP 〉 | 〈NUM〉
〈NUM〉 → 0 | 〈NZ〉
〈NZ〉 → 1〈N〉 | 2〈N〉 | · · · | 9〈NZ〉
〈N〉 → 0〈N〉 | 1〈N〉 | 2〈N〉 | · · · | 9〈NZ〉 | ε

NZ is to allow you to write zero but prevent you from writing 00. To properly display
derivations, we will use trees called parse trees.

Definition 9.4 (Ambiguity in Context Free Languages). The grammar allows two (or
more) distinct ways of parsing an expression. Such a grammar is called ambiguous. An
example of bad grammar engineering. A given language does not have a unique grammar.
With regular languages there was a unique minimal automaton; there is no such concept
in context free languages.

It is possible to redesign the grammar so that it is not ambiguous, at least in this
case. There exist languages for which no unambiguous language is possible. Then it is
inherently ambiguous.
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§9.2 Designing CFG

Example 9.5 (Counting CFG)

How to produce the language L = {anb2n | n ≥ 0}. Rules:

S → aSbb | ε

Keep going until you are happy and then wipe out the S. Notice that context free
languages can count

Example 9.6 (Palindromes)

L = {x ∈ Σ∗ | x = xREV }. Rules:

S → aSa | bSb | a | b | ε

Example 9.7

L = {x ∈ Σ∗ | #a(x) = #b(x)}. A bit harder than example number 1. To make it
easier let d(x) = #b(x)−#a(x) and L = {x | d(x) = 0}.

Let x ∈ L, and u be the shortest prefix of x such that d(u) = 0 and suppose u starts
with b. u must end with a because it starts with b. So u = bva and d(v) = 0.

x = uz ⇒ d(z) = 0

S → ε | bSaS | aSbS
alternatively

S → aSb | bSa | SS | ε

Fact 9.8. Every regular language is a CFG.

Definition 9.9. A CFG is said to be in Chomsky Normal Form if every rule has the
form

A→ BC or A→ a

Here A,B,C are non-terminals and a is a terminal. We do not allow rules like A → ε
except for the start symbol. Some resources say that even the start symbol can’t go to
epsilon.
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Theorem 9.10

Every context free language is generated by a context free grammar in chomsky
normal form.

Proof. The idea is to systematically get rid of bad rules. e.g. A→ ε is a forbidden
rule so throw it out and look at any rule with A on the RHS e.g. B → α1Aα2A. Add
all possible rules with some of these A’s removed. So in this case add the following
rules.

B → α1α2A

B → α1Aα2

B → α1α2

Many other modifications of this type. Consider

A→ x1x2x3 · · ·xn, xi ∈ Σ ∪ V
becomes

A→ x1A1, x1 → x1 if x1 ∈ Σ

A1 → x2A2, ...

All these Ai are new non terminals.

You can see that there are lots of ways to modify the grammar while preserving the
languages.

§9.3 Closure Properties of CFL’s

1. L1, L2 are CFL’s then L1 ∪ L2 is a CFL.

Let S1 be the start for G1 and L(G1) = L1, and S2 be the start for G2 and
L(G2) = L2. Take all the rules together and add S → S1 | S2.

2. L1 · · ·L2 is also a context free language.

→ S1S2

3. L∗ is a context free language if L is. Add a new start symbol S′ and add the rule

S′ → SS′ | ε

4. CFL’s are not closed under

a) intersection

b) complement

Easy proofs becaues of the power of grammars rather than fiddling with automata.
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Example 9.11

L1 = {anbncm | n,m ≥ 0} is a CFL, and so is L2 = {ambncn | n,m ≥ 0}. Then
L1 ∩L2 = {anbncn | n ≥ 0}. The idea is that when there is a buffer, you can’t count.
This is our favorite example of something that is not context free.

Tomorrow we will see a new pumping lemma for context free languages.

Note also that L = {anbncn | n ≥ 0} is not a CFL but L is a CFL! Also see that if
it were closed under complementation and under union it would have been closed
under intersection. So it cannot possibly be closed under complementation.

Proposition 9.12

If L is a CFL and R is a regular language then L ∪R is a CFL.

Fact 9.13. There is an algorithm to look at a grammar and decide if L(G) = ∅. It’s
easy to write grammars that don’t produce anything. For example if you don’t give a
rule for the start symbol. No matter how many other rules you have it won’t produce
anything. It might be that you never get rid of the non-terminals, which by definition are
not in the language. The point is that there is an algorithm that can look and decide.

Proof. DIY

Algorithm to decide if w ∈ L(G). Works on general context free grammar (even ambiguous
ones). To reduce the amount of book keeping assume G is in chomsky normal form.

Typical dynamic programming algorithm. Given G = (V,Σ, S, P ). P for the set of rules
because they are referred to as productions. Input w = a1 · · · an ∈ Σ∗, ai ∈ Σ.

The idea is to work bottom up to construct a possible derivation for w. To get a specific
letter a we must have used a rule of the form A→ a.

We define inductively a 2-indexed family of subsets of V .

i ≤ j, Xij := {A ∈ V | A→ ai · · · aj}
Xii = {A ∈ V | A→ ai}

When we come to compute Xij , we assume that we have already computed Xij , Xkj for
all k between i and j When we come to compute Xij , we assume that we have already
computed Xik, Xkj for all k between i and j. So if B ∈ Xik, C ∈ X(k+1)j and A→ BC
is a rule in G then we put A ∈ Xij .

§9.4 Algorithms For CFLs

1. L(G) = ∅ is decidable.

2. L(G) infinite is decidable.
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3. L(G) = Σ∗ is undecidable. This is surprising at first. Provably impossible.

Start of a topic called parsing. Heavily studied in a compiler class. Reached such a high
state of understanding that nobody really needs to write parsers anymore because people
have written parser generators.

§9.5 Pushdown Automata

This is an NFA + Stack (1 stack only, no more). Emphasis on NFA. Nondetermism is
built in to the structure. DFA pushdown automata are not equivalent to NFA pushdown
automata. There is an equivalent deterministic context free language.

Theorem 9.14

Every CFL can be recognized by a PDA (pushdown automata) and every language
recognized by a PDA is a CFL. A language is context free if and only if it is recognized
by a PDA.

Use judgement. Sometimes it is much easier to do a proof via PDA, and sometimes
easier via grammar.

Definition 9.15 (Pushdown Automata). Q represents the states (finite).

Σ represents the input alphabet (finite). Σε = Σ ∪ {ε}.

γ represents the stack alphabet γ ⊃ Σ, γε = γ ∪ {ε}

δ : Q× Σε × γε → Pf (Q× γε)

Pf is the finite power set.

Reading a letter involves (i) looking at the input and the top of the stack, (ii) changing
the state, (iii) poping the stack or pushing something on the stack or both and then
move to the next input symbol.

Notation, a, b → c. b is seen on top of the stack, a is the next input symbol, pop the
stack and replace b with c. a may be ε which would mean don’t read input

Reading a letter involves (i) looking at the input and the top of the stack, (ii) changing
the state, (iii) poping the stack or pushing something on the stack or both and then
move to the next input symbol.

Notation, a, b → c. b is seen on top of the stack, a is the next input symbol, pop the
stack and replace b with c.

a may be ε which would mean don’t read input. b may be ε which would mean just push
c. c may be ε which would mean just pop the stack.
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Example 9.16

You are required to go all the way to the end of the input or you are jammed and
rejected. This is an example of a deterministic machine but in general you can have
non determinism.

Example 9.17

L = {aibjck | i, j, k ≥ 0 ∧ (i = j ∨ i = k)}

Note 9.18.

1. Acceptance only happens at the end

2. A PDA cannot “decide to jam” when there are valid moves.

Note 9.19. There is an alternative notion of acceptance: no accept states, we accept if
the stack is empty at the end of the input. These are equivalent.

anbncn cannot be accepted by a PDA because we can the a’s and count off the b’s
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but then we don’t know what to do with the c’s. If we had 2 stacks, we could accept
{anbncn | n ≥ 0} by pushing to the second stack as we pop from the first stack.

{anbncndn | n ≥ 0} still only needs 2 stacks, because you can go back and forth between
the two stacks. 2 stacks is enough for any number.

Fact 9.20. A PDA with two stacks is universal. i.e. it has the same power as a turing
machine and can compute any computable function.

People realized that complexity is more significiant than power, because the power of
everything is the same once you get to two stacks, two queues, etc.

§10 05-20

Proving pumping lemma we used the way that DFA has finitely many states. But the
size of the stack can be infinite. Instead we use the fact that a grammar for a CFL has
only finitely many variables.

Height of parse tree increases less quickly than the length of the word. For a long enough
word, H > # of non terminals in the grammar.

This means that at some point there has to be a repeated non-terminal.
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It is not possible that both v and x are empty. This is true if we assume Noam Chomsky
form. But then we can change the second T into generating vwx which would mean thta
uv2wx2y ∈ L. And you can do this again which would mean uv3wx3y ∈ L. We conclude
that

∀i ≥ 0 uviwxi ∈ L

Lemma 10.1 (Pumping Lemma for Context Free Languages)

∀CFL,L, ∃p > 0

∀s ∈ L |s| ≥ p
∃u, v, w, x, y ∈ Σ∗ s.t. s = uvwxy, |vx| > 0 , |vwx| ≤ p

∀i ≥ 0, uviwxiy ∈ L

No longer guaranteeing that is happens early on in the string.

Lemma 10.2 (Contrapositive of Pumping Lemma for Context Free Languages)

Fix some language L.

∀p > 0, ∃s ∈ L, |s| ≥ p
∀u, v, w, x, y ∈ Σ∗

s = uvwxy, |vx| > 0, |vwx| ≤ p
∃i ≥ 0, uviwxiy /∈ L
⇒ L is not context free
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Example 10.3

L = {anbnan |n ≥ 0}.

1. Demon chooses p

2. We choose apbpap.

3. Possibilities for uvwxy.

a) If v or x stradles a block boundary, the demon loses with i = 2 because
the a’s and b’s will be out of order.

b) If v and x both contain only a’s they must be in the same block. The
demon loses with i = 2 because blocks will no longer be of the same size.

c) If v and x contain only b’s, the demon loses with i = 2 because the b
block is too long.

d) If v contains only a’s and x contains only b’s, then demon loses with i = 2
because the untouched block will be of different length.

4. Therefore the language is not context free because we have a winning strategy.

Example 10.4

L = {anbn | n ≥ 0}. In the regular case, the y consists of only a’s so we win. But
now in the context free case, there isn’t a winning strategy.

Example 10.5

L = {ai+jbj+kci+k | i, j, k ≥ 0}. Try to recognize instictively whether or not the
language is context free before proving it.

This is context free! Trying to reason about why. i+ j is unbounded, but the stack
is also unbounded. A lot more tricky to check CFGness.

Exercise: Cook up a CFG for this.
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Example 10.6

|Σ| ≥ 2. L = {ww | w ∈ Σ∗}, L′ = {wwREV | w ∈ Σ∗}. The first is not context
free while the second is. The first is not possible because it’s difficult to check if
the strings are the same. The second is context free because the stack is good for
checking the reversed string.

Fact 10.7. If L is CF and R is regular, then L ∩R is a CFL.

Example 10.8

L = {ww | w ∈ Σ∗}. We use R = a∗b∗a∗b∗ and show L ∩ a∗b∗a∗b∗ is not a CFL so
L cannot be a CFL.

1. Demon chooses p.

2. We choose apbpapbp.

3. Possibilities for uvwxy.

a) If v, x straddle block boundaries, the demon will lose

b) If v, x are in the same block the demon loses because words aren’t the
same length.

c) v and x have to be in consecutive blocks because of the bounded size
of vwx. Note that the first copy of w starts with a so the second word
cannot start with b. Also that the second copy ends with b so the first
copy must end with b. So the boundary between 2 copies of w has to
be at the end of the 2nd block. So although the two words could be the
same size, they won’t be the same words.

4. Therefore there is a strategy to always beat the devil so the language is not
context free.
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Example 10.9

L = {0i1j | j = i2}. This is not a CFL.

Let A be the adversary and I be us.

1. A→ p

2. I → 0p1p
2

3. A→ uvwxy = 0p1p
2
, |vwx| ≤ p, |vw| > 0.

4. I → case analysis

a) vwx all zeros pick any i 6= 1.

b) vwx all ones, pick any i 6= 1.

c) v, x straddles the boundary, i = 2 gives 0’s and 1’s out of order.

d) v is all zeros and x is all ones. We pick i = 2. Only non trivial case is
when |v| = m > 0, |x| = q > 0. Pumping to i = 2 gives 0p+m1p

2+q. How
do we know that (p+m)2 6= p2 + q?

(p+m)2 = p2 + 2pm+m2

2pm > p⇒ 2pm+m2 > p > q ⇒ p2 + 2pm+m2 > p2 + q

Example 10.10

L = {aq | q a prime}. Even with a stack you cannot check this.

1. A→ p

2. I → aq |q > p, prime

3. A→ uvwxy s.t. |uvwxy| = q, |vwx| ≤ p, |vw| > 0.

4. Let vx = r > 0. Let i = q + 1. Then |uviwxiy| = q + qr = q(1 + r). Can’t be
a prime because it’s the product of two number where each is greater than 1.

Theorem 10.11

Over a one-letter alphabet a language is context-free if and only if it is regular.

Example 10.12

L = {a2n | n ≥ 0} is not a CFL. We showed that this language was not regular.

Exercise 10.13. L = {akbjck | 0 < i < j < k}. Show that this is not a CFL.

52



Cole Killian (05-20) Comp 598 Notes

Definition 10.14 (DPDA). PDA’s feature non determinism. This cannot be eliminated
so DPDA’s are strictly less powerful than PDA’s.

If a CFL can be recognized by a DPDA we call it a Deterministic CFL. All modern
languages are DCFL’s. This makes things fast.

DPDA is a DFA with a stack.

Fact 10.15. DCFL’s are closed under complement and therefore under intersection.

Example 10.16

L = {ww | w ∈ Σ∗}, |Σ| ≥ 2. This is not a CFL, but L is a CFL.

L an be recognized by a PDA. What is in L.

1. Strings of odd length.

2. Might be even length. Then it can be written as concatenation of two equal
length words where the words are not equal to one another. |w1| = |w2| but
w1 6= w2. Two words are not the same if there exists i such that w1[i] 6= w2[i].

Crucial difference is that instead of checking every position, you only have to guess
one position. If there is an existing path, it works.

The idea is guess where i is and guess where the middle of the word is. It is okay
that this i is unbounded because of the non determinism.

How the PDA works:

Push x1 . . . xi−1 onto the stack. Then remember what xi is in the state. Start
popping the stack until it is empty. Then start pushing letters onto the stack. It
guesses where yi is. It looks at yi and compares it with xi. It then pops the stack as
it reads the remeaining letters. If the stack is empty at the end then xi and yi are
indeed at the right positions.

(i− 1) symbols on the stack. (n− i) + (i− 1) = n− 1 between xi and yi.

After checking yi there are (n − i) letters on the stack. This exactly matches the
(n− i) letters after yi.

Key point is didn’t have to look at all the symbols, but used them to count.
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Example 10.17

Equivalent CFG for L. Let V = {S,A,B,C}, Σ = {a, b}.

S →

A produces odd length words with a in the middle.

B produces odd length words with b in the middle.

S → AB ultimately generates xay ubv. n = |x| = |y| and m = |u| = |v|.

There is guaranteed to be one place where the corresponding positions are not the
same.

Coming up.

1. Thursday. Concept of computability. Models of computation. Unsolvable problems.
CE functions. Dovetailing.

2. Monday. Reduction.

3. Tuesday. FOC.

4. Wednesday. Lambda-calculus.

5. Thursday. Godel’s Theorem. Recursion Theorem.

§11 05-21

§11.1 Existence of Unsolvable Problems

Modern language makes this proof much easier than it was for Turing.
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Theorem 11.1

There is no algorithm that can analyze algorithms and their inputs and determine
whether the algorithm halts or not on the given input.

Proof. Write S for an algorithm. S(x) for running algorithm on input x. #S for the
code of S. Everything used to have to be coded up as an integer. S(w) � indicates
that S halts when run on w. S(w) � for when S runs forever on the given input.

Assume we have a program H(#S, x) that returns true if S(x) � and false if S(x) �.
H itself always halts.

Define P (x) := if H(x, x) then loop forever else halt.

Now we give P it’s own code. The question is P (#P ) � or P (#P ) �. Two cases

1. If P (#P ) �, then H returns true but this means that P loops. Contradiction

2. If P (#P ) �, then H returns false but this means that P halts. Contradiction

Therefore a program like P cannot exist.

§11.2 Turing Machine

Notes

δ(q, a) = (q′, b, L) means if the machine reads a and is in state q, it changes state to q′,
writes b in the place of a and moves one step to the left.

At each stage only a finite amount of information is processed.

Easy to see that {anbncn | n ≥ 0} can be recognized by a turning machine.

A configuration of a TM is a description of its state, the tape, and the position of the
reading head. Convention that you write all of the tape to the left of the state, then the
state, and then the rest of the tape including the cell the head is looking at.
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With this you can move backwards in the “stack” without deleting information.

uaqibv yields uqjacv if δ(qi, b) = (qj , c, L). Emphasis on how only a three letter window
is affected.

Acceptance of w by M . Start in a start configuration q0w. Follow the transitions and
end up in the accept state. Once you get to the accept state you can’t leave.

A new phonomenon: The machine may go into an infinite loop. This doesn’t happen in
DFA or NFA because you read left to right and you are done.

The language of a machine. L(M) = {w |M halts and accepts w}.

If w /∈ L(M) it does not mean that M explicitly rejects w. It could be looping forever.
Basically there is a new “I don’t know” option which makes a huge difference. Not
everything can be answered.

Definition 11.2 (Turing Recognizable). L is Turing Recognizable if ∃TM M such that
L = L(M).

We say computably enumerable or CE for recognizable.

Definition 11.3 (Turing Decidable). L is Turing Decidable if ∃TM M such that
∀w, M(w) � and L = L(M). i.e. for every word you get a Yes/No answer.

We say computable for decidable.

Fact 11.4. Any decidable language is, of course recognizable.

Note 11.5. Old terminology. Recursively enumerable (RE) for CE. Recursive for
decidable.
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§11.3 Models of Computation

One can think of a turing machine as a computing function f : N→ N instead of accepting
languages. They are equivalent, but sometimes it is more helpful to think in one way
than the other.

People proposed many variations all of which turned out to be equivalent to turing machine.
Examples include Multitape Turing Machine, Nondeterministic Turing Machine, n-dim
TM, Post Machine, 2 stack NFA, 2 counter, RAM using assembler, while programs, any
modern programming language, λ-calculus, conbinatory logic, phrase structure grammas,
post systems. This is not to say that some are not differences in efficiency/ease.

Are all possible formalisms equivalent? We don’t know for sure but it is believed so.
Church-turing thesis says so.

So we believe there isa notion of computable functoin independent of any specific model
of computation.

Proved that certaint hings were impossible but in a completely different sense. When
referring to distributed computing, the notion of what is computible

Turing machine writes down all the prime numbers. Never going to write them all because
there are infinitely many.

If you define computing to be looking at the answer one it halts, if you say you have one
TM who’s tape is being fed into a second TM, the first guy doesn’t even have to halt
before being useful.

§11.4 Theory of Computability

We say 2 infinite sets are equipollent if ∃ a bijection between them. There is no bijection
between N and 2N but there is a bijection between N× N→ N.

Definition 11.6 (Equipollent). Two sets are said to be equipollent if there is a bijective
function mapping one onto the other.

”Equipollent” means ”of equal power”, where ”power” here alludes to the size of the sets.
Two sets are equipollent precisely if they have the same cardinality.

We now have algorithms that may loop forever and produce no output. We model this
by partial functions, f : N → N. Partial means that f is not defined for every n ∈ N.
Let f(n) � mean f is defined on n and f(n) � mean f is not defined on n.

dom(f) = {n | f(n) �}

f = g as partial functions means dom(f) = dom(g) and ∀n ∈ dom(f), f(n) = g(n).
New notion that we don’t typically have is f ≤ g means that dom(f) ⊆ dom(g), ∀n ∈
dom(f), f(n) = g(n). This gives a partial order structure.

There is a minimal element, i.e. the everywher undefined function. It’s domain is the
empty set.
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range(f) = {m | ∃n ∈ dom(f) s.t. f(n) = m}

When discussing computability, N is not important; no real difference between N, Nk,
and Σ∗. R is not comparable because uncountable; there is a fascinating field concerning
R but we won’t discuss it here.

Note 11.7. It is not algorithmic to write things like:

1. wait for M to halt, if it doesn’t halt then...

2. Check on every word if...

Definition 11.8 (Computable Function). A function f : N→ N is computable if there
is an algorithm A such that for all n ∈ dom(f), A halts and the output if f(n).

Definition 11.9 (Computable/Decidable Set). A set of natural numbers X ⊆ N is
computable or decidable if its characteristic function

χx(n) =

{
1, n ∈ X
0, n /∈ X

it total computable.

Definition 11.10 (Total function). A total function is defined for all possible input
values.

Proposition 11.11

An infinite set of natural numbers is decidable iff it is the range of a total non
decreasing computable function.

Proof. Suppose we have X, we have f as above X = range(f) and we have an
always terminating algorithm for f called A. Let x, want to know if x ∈ X.

Run A on 0, 1, 2, 3, . . . . Eventually you may get A(n) = x then say yes x ∈ X. Or
you may get A(n) > x then stop and say no, x /∈ X.

For the reverse direction, assume we have a decision procedure for X, call it B. Run
B on 0, 1, 2, . . . . As soon as it says “Yes” for the the first time you say f(0) = x0.
Second time you say f(1) = x1. This gives a total non-decreasing computable
mapping whose range is X.

Definition 11.12 (Enumerable). A set X ⊆ N is called enumerable or CE if ∃ algorithm
A that lists all the members of X and only the members of X in some order, not necessarily
increasing order. A may not halt but it produces every element of X eventually. No
guarantee of when and in what order.
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Theorem 11.13

A set X is CE iff

1. It is the domain of some computable function.

2. The range of a computable function

3. SX is computable where

SX =

{
1 n ∈ X
? n /∈ X

Proof. Rigorous proof in course notes.

Note 11.14. Computable set is the same as decidable set. Enumerable is the same as
computably enumerable and is weaker then computable/decidable.

Review notes online

Theorem 11.15

The union and intersection of 2 CE sets is CE. This is how computers can do things
concurrently.

Remark 11.16. The complement of a CE set is not always CE.

Proposition 11.17 (Post’s Theorem)

If a set X and its complement X are both CE then they are both decidable.

Theorem 11.18

A set X ⊆ N is CE iff ∃a decidable Y ⊆ N such that x ∈ X ⇔ ∃y ∈ N, 〈x, y〉 ∈ Y

Proof. If Y is decidable (or even CE) we enumerate its memebers and compute

§12 05-25

§12.1 Reductions

P reduces to Q means if I can solve Q I can solve P . This is roughly equivalent to Q is
“harder than” P .

Algorithm for solving P . First transform the problem into a Q problem. Then feed the
problem to the Q solver.
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If you know P is undecidable than the putative Q solver cannot exist, so Q is also
undecidable.

≤ is a preorder. Transitive so reductions can be chained. Not partial order because it
doesn’t have anti-symmetry.

Notation. 〈M〉 is encoding of a machine. 〈M,w〉 is a machine and its input. 〈M1,M2〉 is
two machines. 〈G〉 encodes a CFG.

HTM = {〈M,w〉 |M halts on w}
ATM = {〈M,w〉 |M accepts w}

HTM accepts the set of machines and input that halt. ATM accepts the set of machines
and inputs that those machines accept. HTM ≤ ATM .

Note 12.1. Constructing a machine should be thought of as writing the code for the
machine.

Algorithm for ATM cannot exist because HTM reduces to it.

EMPTYTM = {〈M〉 | L(M) = ∅}.

ATM ≤ EMPTYTM . Machine:
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REG, is L(M) a regular language? Construct machine.

Note 12.2. The more powerful a gadget is, the easier it is to build a reduction to that
gadget.

EQTM = {〈M1,M2〉 | L(M1) = L(M2)}. EMPTYTM ≤ EQTM . Construct a machine
that rejects all words, and compare equality of input to EMPTY with this machine
using EQ machine. If they are equal, then M is empty.

Exercise 12.3. Show that the following are undecideable.

1. L(M) = L(M ′) where M ′ always halts.

2. L(M) is context free.

3. |L(M)| <∞.

4. L(M) = Σ∗.

§12.2 Sharper Notion of Reduction

Mapping reduction. Suppose L1, L2 ⊆ Σ∗. We say L1 is mapping reducible to L2

L1 ≤m L2
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if there exists a total computable function f : Σ∗ → Σ∗ such that ∀w ∈ Σ∗, w ∈ L1 ⇔
f(w) ∈ L2.

Note 12.4.

1. L1 ≤m L2 then L1 ≤m L2. This is not true for general reductions.

2. ≤m has a direction because f has a direction. No guarantee that you can go both
ways. L1 ≤m L2 does not mean L2 ≤m L1.

Fact 12.5. Facts about ≤m.

1. P ≤m Q and P is undecidable then Q is undecidable

2. P ≤m Q and Q is decidable then P is decidable.

3. P ≤m Q and Q is computably enumerable then P is also computably enumerable.

4. P ≤m Q and P is not computably enumerable, then Q cannot be computably
enumerable.

5. If P ≤m Q and P is not co-CE then Q cannot be co-CE. co-CE means if the
algorithm is NO your algorithm will definitely tell you. CE means if the answer is
YES your algorithm will definitely tell you.

HTM , ATM are CE but not coCE. Run it and it will tell you if the answer is yes.

ATM , EMPTYTM are co-CE. You will definitely find out if it is not empty with
dove tailing.

Semi decision problem, computably enumerable set.

ATM ≤ EMPTYTM but this is not a mapping reduction. Suppose we had ATM ≤m
EMPTYTM , then ATM ≤m EMPTYTM . But this is not possible because ATM is co-CE
while EMPTYTM is CE.

§12.3 Turing Reduction

P ≤T Q. I get to use a Q oracle as many times as I want and I can do any computable
post processing I want.

P ≤m Q. I get to do some total computable preprocessing and then ask my Q oracle 1
question and output the answer without post processing. Can’t even flip the output.

Theorem 12.6

EQTM is not CE or coCE. More difficult than halting problem.

Fact 12.7. Halting problem is complete for all CE problems. CE complete.

Non-halting problem is coCE complete.
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|L(M)| =∞. INF = {〈M〉 | |L(M)| =∞}

Claim: HTM ≤m INF .

Reducing of non halting problem. Let input to M ′ be X, then run M on w |x| times and
reject x if it halts, accept otherwise. The language of M ′ is everything if w runs forever
and is finite otherwise, which can be checked with INF.

Theorem 12.8 (Rice’s Theorem)

P : N→ N. JP K := {(x, y) | P (x) = y}.

P1 ∼ P2 means JP1K = JP2K.

P1, P2 are extensionally equal.

M1 ∼ M2 ⇔ L(M1) = L(M2). Q : PROG → {T, F} is called a property of
programs. Q is an extensional property if P1 ∼ P2 ⇔ Q(P1) = Q(P2). Q only
depends on the IO behavior. Q only depends on the functional spec.

Q always true or Q always false are trivial properties.

Rice’s theorem: Every non trivial extensional property of programs is undecidable.
Nothing that just depends on the IO spec can possibly be decidable.

Proof. Let Q be a nontrivial property of CE sets. i.e. ∃P such that Q(P ) = true
and ∃P ′ such that Q(P ′) = false.

Assume empty does not satisfy Q. i.e. ∀M if L(M) = ∅ then Q(M) = F .

Let M0 be such that Q(M0) = T . Then L(M0) 6= ∅ by our assumption.

Lq = {〈M〉 | Q(M) = T}

Claim: ATM ≤m LQ. Have gadget to solve x ∈ LQ.

M ′ with input x construction: Simulate M on w. If M accepts w then simulate M0

on x.

§13 05-27

§13.1 Universal Functions

Definition 13.1. A binary function U : N2 → N is said to be universal for the class of
computable unary functions if

1. ∀n, Un : x 7→ U(n, x) is computable. Un is called a section of U . This is called
currying, when you split a function that takes multiple parameters into nested
unary functions.
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2. ∀ unary computable f : N→ N, ∃n such that Un = f , i.e. ∀x Un(x) = f(x)

Note that in this definition U doesn’t have to be computable.

Note 13.2. The list of programs is countable.

Theorem 13.3

There is a binary computable function U : N× N → N such that U is a universal
function for all unary computable functions. i.e. one turing machine that can
simulate all the others.

Proof. Consider your favorite programming language (YFPL), and enumerate all
legal programs, p1, p2, . . . , pn, . . .

U(n, x) = pn(x). So U is an “interpreter” while n is the code of the algorithm.

Note 13.4. “Code” comes from the days of early computability theory because every
program could be coded up as a number.

§13.2 Total Computable Universal Function

Does there exist a total computable universal function for the class of total computable
unary functions. Total means it will be defined on all inputs, so everything must terminate.
No!

Let U be any total computable function of two arguments. Define d(n) = U(n, n) + 1.
∀n, d(n) 6= Un(n) so ∀d 6= Un. Can’t guarantee all terminating algorithms, or must allow
some options to not terminate.

Think about why doesn’t this argument work for partial functions? Because U(n, n)
might be undefined, in which case U(n, n) + 1 is still undefined.

§13.3 Compositional Programming

We want to program Compositionally. If f, g rae computable functions, then g ◦ f is also
computable. The map that figures out g ◦ f should be total computable.

Definition 13.5. Let S be any countable set. A map ν : N→ S is called a numbering
of S if ν is surjective.

A value of n such that ν(n) = s is called a code number for s.

Note the indefine article. There can be multiple such n for a given element.

We want to show that for the “right kind” of universal function U , there is a computable
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function with the following properties.

c : N× N→ N
∀p, q, x ∈ N, (Up ◦ Uq)(x) = U(p, U(q, x)) = U(c(p, q), x) = Uc(p,q)(x)

Note 13.6. A set S is computable if there is a total computable function f , such that
f(n) = 1 if n ∈ S and f(n) = 0 if n /∈ S.

Note that computable function doesn’t have to be “computable” set. Only total com-
putable function.

Definition 13.7. Let U be a universal computable function. It is called a Godel
universal function if ∀ binary computable functions V , ∃ a total computable unary
function σ : N→ N such that ∀m,x ∈ N, V (m,x) = U(σ(m), x) (σ will depend on V ).

I stopped taking notes because I realized there was a handout online with detailed notes
on today’s lecture.

§13.4 Primitive Recursive Functions

Godel. These roughly correspond to a programming language with bounded search. i.e
can’t use while loops, only loops that run a set number of times.

Fortran for loops for example. Provably terminating.

Ackerman gave an example of a provably terminating function that was not primitive
recursive.

This makes sense based on the proof above, whereby it’s impossible to produce a universal
total computable function for the class of total computable unary functions.

Kleene: PRF + unbounded search gives partial recursive functions. They include the
power of while loops. Proved that these are equivalent to turing machines and lambda
calculus.

§13.5 Degrees of Unsolvability

Online handout.
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